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SUMMARY

Second-order accurate projection methods for simulating time-dependent incompressible flows on cell-
centred grids substantially belong to the class either of exact or approximate projections. In the exact
method, the continuity constraint can be satisfied to machine-accuracy but the divergence and Laplacian
operators show a four-dimension nullspace therefore spurious oscillating solutions can be introduced. In
the approximate method, the continuity constraint is relaxed, the continuity equation being satisfied up to
the magnitude of the local truncation error, but the compact Laplacian operator has only the constant mode.
An original formulation for allowing the discrete continuity equation to be satisfied to machine-accuracy,
while using a finite volume based projection method, is illustrated. The procedure exploits the Helmholtz–
Hodge decomposition theorem for deriving an additional velocity field that enforces the discrete continuity
without altering the vorticity field. This is accomplished by solving a second elliptic field for a scalar
field obtained by prescribing that its additional discrete gradients ensure discrete continuity based on
the previously adopted linear interpolation of the velocity. The resulting numerical scheme is applied to
several flow problems and is proved to be accurate, stable and efficient.
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1. INTRODUCTION

Despite of the fact that the hypothesis of incompressibility of a fluid leads to a simplified set of
equations, the statement that the mass-conservation law requires the velocity of the fluid to satisfy
the constraint ∇ · v= 0, everywhere and for all time, introduces several problems in solving the
continuous as well as the discrete formulation of the governing equations, e.g. see Reference [1].

The incompressible form of the Navier–Stokes (NS) equations was historically solved by means
of classical methods such as the artificial compressibility as well as the pressure correction methods.
Differently from those methods that use the primitive variables, the stream function–vorticity
approach was also introduced because mass constraint is automatically conserved. However, its
three-dimensional extension is not so convenient because of the vector potential that implies to
solve three elliptic equations and some results obtained with the velocity/vorticity formulation had
limited success. Furthermore, progresses in the turbulence modelling mainly exploit the primitive
variable formulation rather than the auxiliary variable ones. In order to alleviate the computational
effort, a numerical formulation in which the velocity and the pressure gradient vector fields
are decoupled in the sense provided by the Helmholtz–Hodge decomposition (HHD) theorem
[2–8],‡ leads to the class of the so-called projection methods. Other than performing the time
decoupling, a fundamental task of the projection is to ensure that the divergence-free velocity
constraint is guaranteed in a discrete sense. Generally, the point-wise NS equations are discretized
at a certain accuracy order leading to the common finite difference (FD) methodology and staggered
(variables shifted each other in their nodal position) or non-staggered (variables positioned in the
same nodes) grid collocations are possible.

As a difference from FD methods wherein the differential form is discretized, finite volume
(FV) formulations are based on the discretization of the integral form of conservation laws.
Many progresses have been done during the years both in analysing and developing FV methods
possessing several good properties (e.g. see the old review [9] and the recent book [10]). FV
methods are particularly favourite for their conservation properties as well as for the generality
of their application on regular and non-regular grids. Of course, staggered or non-staggered grid
collocations are possible with FV schemes, too.

Since the appearance of the marker-and-cell (MAC) method [11], for many years, FD for-
mulations on staggered grids were the standard in typical engineering computations. However,
although MAC-based methods ensure discrete mass conservation they are not particularly suitable
for modernization of integration methods. Compared to staggered computational grids, the use of
non-staggered grids for solving the integral form of the NS equations with FV schemes is prefer-
able for the advantage in a greater simplicity of their implementation. Owing to the complexity
in discretizing integrals and derivatives, this gain is fundamental when the spatial discretization is
performed at high accuracy order on a non-uniform grid, for example as done in Reference [12].

For the purposes of this paper, we will concentrate on FV projection-based methods on non-
staggered grids that are second-order accurate both in time and in space and are suitable for
simulating long-time behaviour flows, e.g. turbulence. More specifically, the class of the so-
called pressure-free projection methods [8, 12] is here considered, while incremental projection

‡A reviewer, we thank for the information, suggested to reference also the recently published paper ‘Numerical
Simulations of Incompressible Aerodynamic Flows using Viscous/Inviscid Interaction Procedures’, Hafez M, Shatalov
A, Wahba E. Computer Methods in Applied Mechanics and Engineering 2006; 195:3110–3127.
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methods are not analysed. Let us remind that an old proof of convergence of the first-order
accurate discrete projection method on non-staggered grids was provided in Reference [13] but
only for that specific kind of boundary conditions for which it is correct to speak of exact
projection. In Chorin’s formulation, both pressure and velocity are specified at cell-centres and
central differences are used for divergence and gradient operators. Interestingly, in 1969, Chorin
concluded his paper stating that ‘is highly improbable that a flow containing a strong cascade
process, i.e. a process in which energy is transferred from large to small eddies can be adequately
described by a difference method, for indeed, such flows are characterized by rapid increase in the
higher derivatives. This of course excludes turbulence from the range of application of difference
methods’. This is also a reason for which we concentrate on the integral (i.e. weak) form of the
equations.

In the framework of projection methods on non-staggered grids it is common to speak of exact
projection methods (EPM) when the discrete divergence can be driven to zero at machine accuracy
whereas ones speaks of approximate projection method (APM) when such constraint is relaxed.
In the latter case, the continuity is no longer driven exactly to zero but it ‘converges to zero’
according to the magnitude of the local truncation error, e.g. see References [14–27]. Associated
to these two methods are defined the exact projector, say PH , and the approximate projector, say P .
Both formulations first proceed by computing a cell-centred intermediate non-solenoidal velocity,
say v∗

C , and projecting it according to either PH (v∗
C ) or P(v∗

C ). However, for APM formulations
possible different choices of computing v∗

C have different consequences on the solution, e.g. see
Reference [21].

Although such projection methods are very popular for solving the incompressible form of
the NS equations, they are not without problems. It is well known that, in order for exactly
ensuring mass conservation on non-staggered grids, one must use, for computing the pressure,
a large computational stencil on which decoupled modes can subsist. More specifically, the main
problem can be addressed in the fact that on a side, if the EPM is used, the discrete divergence
operator, say D, and gradient operator, say G, produce an elliptic§ operator, say LH =DG, defined
on a sparse stencil that, owing to the lack of communication between neighbouring nodes (odd–
even decoupling), could produce unphysical oscillating solutions. This is a well-known plague
intrinsic to the EPM on non-staggered cell-centred velocity. In 2D, four non-divergence-free
modes (eight for 3D) which are not recognizable by the discrete divergence operator appear. Let
us call vn+1

C ,G�n+1
C the discrete solutions that are obtained on cell-centres in the EPM. There are

four non-communicating grids since the nullspace (i.e. the maximal set of linearly independent
vectors that equal zero when they are multiplied by the system matrix) of the discrete divergence
Dvn+1

C , as well as that of the discrete Laplacian LH (�n+1
C ), has a dimension of four, as it can be

shown by analysing the number of zeros of the Fourier symbol, e.g. see Reference [14]. Three
of them correspond to the highest wavenumbers (the one-dimensional Nyquist frequencies along
x- and y-directions and its combination), one to the lowest (the zero wavenumbers, i.e. the constant
mode). This fact indicates the existing decoupling of the neighbouring nodes that must be carefully
remedied since if the computation introduces non-divergence-free modes at high wavenumber, for
example with sharp gradients in the flow field, they cannot be removed. Spurious non-physical

§ It will be used the term ‘pressure equation’ to indicate the elliptic equation that is solved to enforce continuity,
though for the incompressible flow model, there is no thermodynamic pressure equation but it exists only a scalar
field acting as a Lagrangian multiplier [1].
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modes can make unfeasible the long-term numerical solutions also because such modes can be
amplified in high Reynolds number flows leading to numerical instability. Let us observe that, for
confined flows, suitable boundary conditions can re-couple the grids but such coupling is slowly
transmitted in the interior and special linear algebra solvers must be used.

On the other side, using the APM, one does not demand that the discrete system match the
condition for being a projection. Hence, the most straightforward means to discretize the operators
on a compact stencil is used for obtaining a smooth pressure field and the nullspace of the
resultant discrete Laplacian operator has a dimension of only one, corresponding to the constant
mode. However, the price to be paid is that the discrete continuity constraint is not satisfied up
to machine-accuracy. More precisely, it converges towards a source term that is proportional to
fourth-order derivatives of the pressure field, multiplied by the time-step and the square of the
grid step sizes, e.g. see References [15, 20]. Despite of the fact that the consistence property
guarantees that this source term vanishes for decreasing grid sizes, the presence of such error, at
fixed grid measure, violate the discrete conservation of kinetic energy in the inviscid limit and such
violation can become unacceptable. Actually, APM are not without their own problem, especially
for long-time integration as it is necessary for turbulence simulations. In fact, divergence and
gradient velocities, that are similar to the EPM formulation, can still experience decoupling. Thus,
the presence of the continuity error can lead to degenerating results and it is important to consider
known analyses of it, e.g. see Reference [21].

Owing to the above depicted plagues, for a long time second-order discretizations on non-
staggered grids have been considered inefficient in producing physically relevant solutions. At
present, the continuous advances of dedicated procedures allow us now to use non-staggered grids
for several flow problems with greater accuracy but this goal still requires ‘ad hoc’ care as well
as some specific built-in strategy.

One of the strategies that have been successful for producing physical relevant solutions is based
on a hybridization of the traditional non-staggered grids, over which all the variables are defined in
the cell centres, obtained by defining also the interpolated normal-face velocities in addition to the
centred variables. Furthermore, a smoothing is obtained by adding ‘ad hoc’ some dissipation terms
[20, 22, 23] derived from suitable interpolations. This approach, called momentum interpolation
method, has been adopted for steady and unsteady simulations [23] and extended to unstructured
grids [24].

Alternatively, a compact treatment of the pressure equation on uniform structured grid was
instead proposed and analysed by Dormy in Reference [25] with both single and two-step proce-
dures. In the single-step procedure a 19 points computational stencil is necessary while modifying
also the source term in the pressure equation. However, it was found that the computational pro-
cedure is onerous being the number of iterations almost three times greater than required by the
7 points scheme. Thus, while solving two consecutive elliptic solvers with modified source terms
but discretized on a compact 7 points stencil, a two-step procedure is proposed, showing that is
more rapidly resolvable and computationally efficient.

A different approach is proposed by Rider [14, 26]. He designed projection filters to diffuse
non-divergent modes that can be still present in the APM-based solution motivated by the fact that,
if suitably discretized, projection filters can be applied to produce physically relevant solutions for
long-time integration. In a more general sense, this means that one could consider, for example,
that there is a next step after an exact projection, having the aim of eliminating spurious high
frequencies non-divergence-free modes while introducing local errors in the continuity equation.
Rider recognized this sequence as consisting of an application of a diffusion-like operator, say
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�, that acts on the velocity field computed after a complete APM step. The projection filter
adopts only the diagonal part of the compact elliptic operator and the form of this projection
mimics the Jacobian relaxation thus dumping high frequency errors. It is worthwhile addressing
that Rider specified that the edge-projection filter is characterized by the fact that the correction
is only applied to the velocity in the normal direction of the edge. This fact is relevant when our
formulation will be compared to projection filters. Rider discussed also velocity filters and tested
the improved solution for long-time integration. However, he recognized that filters are equivalent
to add FD expressions for dissipative-like derivatives (even derivatives) and deduced some heuristic
coefficients to modulate their impact on the solution. In fact, he found that the solution quality
degraded when such filters are applied in the entire flow field.

In general the above-mentioned strategies are all based on some sort of diffusion-like operators
and it is questionable the suitability of such methodologies for simulating high Reynolds number
flows, especially for special transitions towards turbulence, in cases in which turbulence in not
in local equilibrium. For example, direct numerical simulation (DNS) and large eddy simulation
(LES) are methodologies for solving turbulent flows where a long-time integration is necessary. In
principle, the superimposed diffusion effect appears less critical in DNS whereas the dissipative
part of the real energy spectrum is numerically resolved. On the other hand, one could wonder
why in DNS it should be useful to adopt projection filters that couple modes at high wavenumbers
whereas the real viscosity is capable to produce similar effect. In fact, in Reference [26] the
Fourier symbol of the Crank–Nicolson difference operator was analysed to deduce the action of
filters when the local scale of motion is characterized by dominance of viscous forces. Conversely,
much more critical appears the effect in LES where either the momentum interpolation or the
diffusion-like operator strategies act on flow scales located at the highest wavenumber components
of the resolved spectrum (i.e. in the inertial sub-range). Therefore, they affect just those motion
components close to the LES filter that are then used in the turbulence model and consequently can
dramatically alter the energy transfer. For example, once discretized, the projection filters proposed
by Rider produce the same local truncation error (in physical space) as the global projection but,
clearly, they are constructed in such a way to change the spectral distribution of the truncation
errors for coupling the various modes near the Nyquist frequencies. One can better understand this
effect by analogy with comparison between a second-order central formula and a second-order
asymmetric formula for the first derivative. Both have the same magnitude of the local truncation
error in physical space but the modified wavenumbers (that can be easily related to the Fourier
symbol of the divergence operator) show that the asymmetric formula produce an additional error
related to the numerical diffusion effect. On the other hand, Rider himself [14] recognizes that the
impact of filters is positive for fully resolved flows, i.e. for DNS. Let us remember that, in LES, one
is interested in obtaining a good spectral accuracy for that part of the spectrum limited by the LES
filters that is placed in the inertial sub-range well far from the dissipative range. Unfortunately,
to the best of the authors’ knowledge, there are no published analyses of the performance of
projection-filters in LES at high Reynolds number.

Even if diffusion-like formulations can be very efficient in some cases, the aim of this study
is to develop a formulation that does not exploit any of them while ensuring mass conservation.
Our strategy has the goal of avoiding to add artificial viscosity since the formulation is intended
to work for LES of non-equilibrium turbulence. We concentrate on the implementation for non-
homogeneous flows where mixed Dirichlet/Neumann boundary conditions are prescribed and
sharp gradients near the boundary can drive to unphysical oscillations for EPM as well as high
magnitude continuity errors for APM. For achieving this goal, the projection-based FV method
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that is proposed in this paper exploits the hybrid non-staggered grid wherein both cell-centred
and normal face velocities are used but, instead of using special interpolations, it uses the HHD
theorem [8] for deriving an additional potential velocity field, defined only in a discrete sense,
which enforces the discrete continuity to machine accuracy without altering the vorticity field.
This is accomplished by solving, after the APM step and on a different stencil, a second elliptic
equation for a scalar field obtained by prescribing that its additional discrete gradients ensure the
continuity constraint in terms of the velocities in the cell-centres. Furthermore, it is shown how
prescribing boundary conditions consistently to those of the first elliptic equation allow us to satisfy
the compatibility condition, ensuring the existence of a solution of the second elliptic equation.
Hence, this formulation can be seen in the framework of the two-step procedures [25] and it is
thereafter addressed as double projection method (DPM). Combination of sparse and non-sparse
stencils allows us a better coupling between pressure and velocity at the boundary while ensuring
the continuity constraint. Then the use of MAC projection-based normal-face velocities stabilizes
the solution without adding artificial viscosity therefore the formulation mimics the filtering effects
of the Rider methodology [14, 26]. More precisely, since y-edge non-divergence-free line modes
occurring with cell-centred projection [14, 26] can be introduced by sharp gradients near boundaries
(local forcing terms such as combustion are not considered), it is the special coupling between the
two potential fields to ensure a regular behaviour near the boundaries. The computational cost that
is paid for performing the second elliptic solver must be clearly taken into account but it was found
that, at the same convergence tolerance, it results no more than one-third of the first elliptic solver.
Actually, the convergence tolerance of the second elliptic solver can also be relaxed to a higher
value without affecting the benefits of the DPM. This cost seems to be acceptable especially if one
thinks that an APM requires a very fine mesh to diminish the local truncation error of the discrete
divergence that, being proportional to fourth derivatives of the pressure, can be very high close to
a boundary. Let us remark that, along with [25], also in References [21, 27] formulations having
a special sequence of two projections were addressed both confirming that the computational cost
can be acceptable.

Moreover, a further feature of the present DPM formulation is that the convective fluxes are
here discretized with a genuine second-order centred formula whereas the intrinsically dissipative
QUICK formula in Reference [23] or Godunov-type advection schemes in References [14, 21, 26]
are used. On a side, the goal is to eliminate any additional errors of diffusive type deriving
from asymmetric discretizations in the advection (i.e. presence of imaginary parts in the modified
wavenumbers, indicating artificial viscosity), on the other side, there are known results about
existing advection–projection coupling, e.g. see Reference [21]. In the DPM formulation, it will
be shown how one exploits the MAC divergence-free normal-face velocities in computing the
advective fluxes, in such a way resembling what is reported in Reference [21]. This is a specific
feature consequent to the choice of adopting two consecutive projections.

Eventually, in this study the new high-order accuracy intermediate boundary conditions, proposed
in References [8, 28, 29], are also exploited. This issue seems still leading to some misunderstanding
in the literature, e.g. see Reference [30, p. 525], since when the HHD is not orthogonal, both the
tangential intermediate velocity components and the normal one must be properly prescribed on the
boundaries otherwise the global accuracy of the method is affected [8, 28, 29]. These intermediate
boundary conditions are a higher order accurate extension of the Taylor expansion-based ones
proposed in Reference [31].

The paper is organized in the following way: a section describing the collocation of the variables
is followed by a section briefly illustrating the pressure-free projection method in the continuous
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form. Then, a section is devoted to illustrate the framework of EPM, APM and DPM discrete
formulations and then their specific features when non-homogeneous flow conditions are prescribed.
Finally, a section provides the discussion concerning the property of the DPM in terms of stability
as well as it is compared to a single EPM. Furthermore, it illustrates the specific reason of
retaining the APM step as first stage of the DPM in order to construct a divergence-free velocity
field in a MAC-like arrangement. Eventually, a section illustrates the numerical results obtained in
three different test-cases that are the 2D Taylor-vortex viscous flow, the vortex-in-a-box inviscid
flow, wherein the performances of the DPM are compared also with the projection filter-based
formulation [14, 26].

2. GOVERNING EQUATIONS AND DOMAIN DISCRETIZATION

The motion of incompressible and omo-thermal Newtonian viscous flows in a domain V is governed
by the momentum equation, here written in integral form over a FV �(x) ⊆ V with boundary ��
and its outward-oriented normal unit vector n:∫

�(x)

�v
�t

dV +
∫

��(x)
n · (vv) dS +

∫
��(x)

np′ dS =
∫

��(x)
n · (2�D) dS (1)

along with the continuity constraint ∫
��(x)

n · v dS = 0 (2)

being D= ∇sv the symmetric velocity gradient having zero trace (constraint (2) allows to get∫
�� n · (2�D) dS = ∫

�� n · (�∇Tv) dS), � is the kinematic viscosity and p′ = p/�0 with p the static
pressure. In order to close the problem constituted by (1) and (2), proper boundary conditions are
prescribed over the frontier �V , e.g. Reference [1].

For the sake of simplicity, the formulation is illustrated for a two-dimensional computational
domain V =[0, Lx ] × [0, Ly], is partitioned by means of a Cartesian structured grid. Along the
x-flow direction, assumed homogeneous, the FV centres are uniformly distributed according to

xi =(i − 1
2 )�x (i = 2, . . . , Nx + 1) (3)

being �x = Lx/Nx , the step sizes and Nx , the number of FVs in this direction.
Along the y-flow direction, assumed to be non-homogeneous, a grid that can be either uniform

or non-uniform, is introduced by means of a 1D mapping y = Y (�), � being the independent
variable in the transformed axis. The latter is uniformly partitioned in Ny + 1 nodes according
to �p = (p − 1)h, (p= 1, . . . , Ny + 1), h = Ly/Ny being the grid-spacing and Ny the number of
subdivisions in �-direction. Thus, the FV face co-ordinates in the physical space (see Figure 1)
are defined by y−

j = Y (� j−1) and y+
j = Y (� j ), ( j = 2, . . . , Ny + 1) and, subsequently, the Ny FV

centres are suitably located at the cell barycentre as

y j = (y−
j + y+

j )/2 ( j = 2, . . . , Ny + 1) (4)

Fixing the boundaries nodes y1 = y−
2 = 0, yNy+2 = y+

Ny+1 = Ly completes the
domain partition. Moreover, the distance between two adjacent FV centres is defined as
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Figure 1. Sketch of the y-direction structured grid and non-staggered cell-centred variables.

�y j ≡ y j − y j−1 = (y+
j − y−

j−1)/2, while the FV width along the y-direction is

hy( j)= y+
j − y−

j = Y (� j+1) − Y (� j ) = hY ′(� j ) + h2Y ′′(� j )/2 + · · · (5)

Let us note that, if a non-uniform grid is adopted, a smooth mapping will be assumed so that
hy( j)/h = O(1). Furthermore, even if a uniform discretization is used, i.e. hy( j)/h = 1, one still
has that the nodes on the boundaries y1, yNy+2 are located at half-size from those adjacent in the
interior.

Finally, one has the FV definition �(xi , y j ) ≡ �i j =[x−
i , x+

i ] × [y−
j , y+

j ] being |�i j | = �xhy( j)
its measure, where the face co-ordinates can be expressed in terms of the cell centre co-ordinates as

x−
i = xi − �x/2, x+

i = xi + �x/2

y−
j = y j − hy( j)/2, y+

j = y j + hy( j)/2
(6)

Henceforth, the explicit dependence of hy from j is omitted, and the simplified index notation
x±
i = i ± 1/2, y±

j = j ± 1/2 is used for defining the faces co-ordinates. As shown in Figure 1, all
the unknown flow quantities are co-located in the FV centre (i, j) defined by Equations (3) and (4).

Adding the third direction is straightforward because if it is homogeneous then the same dis-
cretization as the x-direction is prescribed, whereas if it was non-homogeneous, the same as the
y-direction is adopted.

3. TIME INTEGRATION

The time integration of the momentum equation (1) is based on the second-order semi-implicit
Adams–Bashforth/Crank–Nicolson (AB/CN) scheme. In particular, for improving the range of
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numerical stability region, the diffusive terms along the y-axis are integrated according to the
CN approximation, while the AB time-extrapolation is adopted for all the others. According to
such integration method, the discretized momentum equation, along with the associated boundary
conditions, writes for a generic position (i, j)(

I − ��t

2
D2

)
vn+1 =

(
I + ��t

2
D2

)
vn +

∫ tn+1

tn
mpress dt

+ �t

2
[3(�D1vn + mn

conv) − (�D1vn−1 + mn−1
conv)]

vn+1 = vn+1
bc on �V

(7)

since for a second-order accuracy the approximation¶ v∼= v (the bar indicating a volume average
over �) applies, having defined the identity operator I and the vector fields

mconv = − 1

|�(x)|
∫

��(x)
(vv) · n dS, mpres =− 1

|�(x)|
∫

��(x)
p′n dS (8)

and the integro-differential operators along the Cartesian directions as D1, D2

D1( ) ≡ 1

|�(x)|
∫ y+

y−

(
�
��

∣∣∣∣
x+

− �
��

∣∣∣∣
x−

)
d�

D2( ) ≡ 1

|�(x)|
∫ x+

x−

(
�
��

∣∣∣∣
y+

− �
��

∣∣∣∣
y−

)
d�

(9)

x± and y± being the FV face co-ordinates (6).
The velocity–pressure de-coupling is obtained by means of the second-order accurate so-called

pressure-free projection method [12, 28, 30, 31], which is based on a prediction step, wherein a
non-solenoidal vector field v∗ is obtained by solving Equation (7) disregarding the pressure term,
along with proper intermediate boundary conditions, here assigned following a new procedure
[28, 29]:(

I − ��t

2
D2

)
v∗ =

(
I + ��t

2
D2

)
vn + �t

2
[3(�D1vn + mn

conv) − (�D1vn−1 + mn−1
conv)]

v∗ = v∗
bc on �V

(10)

It is worthwhile remarking that, with such projection method being used, the discrete velocities
fields vn , vn−1 must be divergence-free.

Assume that a genuine second-order centred spatial discretization‖ of (10), that will be detailed
in a next section, allowed us to obtain the intermediate velocity in the centres of the previously
defined FVs. Then, in order to obtain a final divergence-free vector field, say vn+1, the intermediate

¶Actually, formulations that exploit a higher order approximation are possible as reported in Reference [12].
‖Let us recall that the momentum interpolation method proposed in Reference [23] uses the second-order upwinded
QUICK discretization for the convective terms.
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velocity is projected into the sub-space of the divergence-free vector fields. Indeed, according to
the HHD theorem, see References [2–8], v∗ is expressed as the sum of the divergence-free velocity
field vn+1 and a pure gradient field, hence

vn+1 = v∗ − �t∇�n+1 (11)

an equation that represents the basis for the next step, that is the solution of the pressure equation.
However, it is well known that ∇� is only a first-order (in time) approximation of the real pressure
gradient although this does not affect the velocity accuracy if the decomposition (11) is really
orthogonal, see References [5, 8, 28–30].

4. EXACT AND APPROXIMATE PROJECTION METHODS: A FRAMEWORK FOR THE
DOUBLE PROJECTION-BASED METHOD

Before illustrating the DPM, we briefly discuss the details of the EPM and the APM on non-
staggered grids since such methods are those accepted as standard tools in scientific computation
of incompressible flows, also with weakly varying density, see References [14–27]. Furthermore,
since they are used as basis for the DPM procedure, their focus points are now addressed. For such
a goal, let us assume to have computed (in the cell centres) a discrete non-solenoidal vector field,
say v∗

C , to be used in the same way either in the EPM or in the APM. For the sake of simplicity,
a two-dimensional case is addressed.

Concerning the EPM, assume that there is an exact discrete projector (symmetric, bounded, idem-
potent), say PH , onto the divergence-free, finite-dimensional space H ={w∈L2(�) : ∇ · w= 0}.
According to the HHD theorem, by applying the projector to both sides of Equation (11) the gra-
dient of a potential field, say �n+1

C , is easily obtained as ∇�n+1
C = (1/�t)(I − PH )(v∗

C ). Hence,
the projector extracts the divergence-free part of v∗

C that is PH (v∗
C ) = vn+1

C , vn+1
C being the

searched divergence-free velocity field, collocated on the cell centres (being PH idempotent, one
has (PH )k(vn+1

C ) = vn+1
C for any integer k). It is a simple matter to show that the exact projector

is defined as

PH � I − ∇[(∇ · ∇ )−1∇·] (12)

Proof of convergence of the first-order accurate discrete EPM was provided in Reference [13]
but only for some specific kind of boundary conditions for which the HHD is orthogonal and
unique.

On two-dimensional, non-staggered, uniform grids along with periodic boundary conditions
it is easy to show that an EPM is obtained if the divergence operator acts in such a way to
enforce continuity in the cell-centre (i, j) in terms of the four neighbouring velocity values
un+1
C i±1, j , v

n+1
C i, j±1. This feature is associated also to the fact that the discrete pressure gradient

exploits only the four nodal values �n+1
C i±1, j ,�

n+1
C i, j±1. This way, one defines the discrete divergence

D, gradient G and Laplacian LH =DG operators, used in the EPM. As a consequence, the discrete
five-points Laplacian operator, say LH (�n+1

C )�∇ · (∇�n+1
C ), will result defined on an expanded

stencil [13], that exploits only the values �n+1
C i±2, j ,�

n+1
C i, j±2, a fact that is well known to produce

a local decoupling. After solving the elliptic equation LH (�n+1
C ) = (1/�t)Dv∗

C with the proper
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Neumann boundary conditions, a unique solution (apart a constant) should be obtained. The updated
cell-centred velocity components are obtained according to the following discretization of (11):

un+1
C i, j = u∗

C i, j − �t
E�x − E−�x

2�x
�n+1
C i, j

vn+1
C i, j = v∗

C i, j − �t
E�y − E−�y

2�y
�n+1
C i, j

(13)

(the shift operator, i.e. E�x = (I + �x�x + [(�x�x )2/2!] + [(�x�x )3/3!] + · · ·) = e�x�x , has been
introduced). Equation (13) ensure that the discrete divergence (Dvn+1

C )i j � [(E�x − E−�x )/2�x

(E�y − E−�y)/2�y] ·
[
un+1
C i, j

vn+1
C i, j

]
can be driven to zero at machine accuracy.

In the traditional non-staggered formulation, one defines also the normal-to-face velocities, say
un+1
C i±1/2, j , v

n+1
C i, j±1/2, obtained by means of linear interpolation of the cell-centred ones (13), that

are

un+1
C i±1/2, j

∼=
un+1
C i±1, j + un+1

C i, j

2
, vn+1

C i, j±1/2
∼=

vn+1
C i, j±1 + vn+1

C i, j

2
(14)

It is important to notice that they are divergence-free with respect to the compact (also called
MAC) divergence operator since the approximation

(DMACvn+1
C )i, j �

[
E�x/2 − E−�x/2

�x

E�y/2 − E−�y/2

�y

]
·
⎡⎣un+1

C i, j

vn+1
C i, j

⎤⎦

= un+1
C i+1/2, j − un+1

C i−1/2, j

�x
+ vn+1

C i, j+1/2 − vn+1
C i, j−1/2

�y
∼= (Dvn+1

C )i, j (15)

applies when Equations (14) are used. This fact is relevant since the interpolated normal-face
velocities un+1

C i±1/2, j , v
n+1
C i, j±1/2 can be used for computing the advective fluxes. It is worthwhile

remarking that the right-hand side of the Poisson equation is the same even if one applies the
MAC divergence operator onto the normal-edge velocities since, according to (15), the second-order
approximation, that is (DMACv∗

C )i, j ∼= (Dv∗
C )i, j , applies too.

Nevertheless, despite of this simple strategy, a plague intrinsic to the EPM on non-staggered
grid affects the results since it is not possible to ensure that a solution is obtainable while avoiding
spurious modes. Actually, in 2D there are four non-divergence-free modes (eight for 3D) that are
not recognizable by the discrete divergence operatorD since the nullspace of the discrete divergence
Dvn+1

C , as well as of discrete Laplacian LH (�n+1
C ), has a dimension of four as it can be simply

shown by analysing the number of zeros of the Fourier symbol, see References [14, 26]. Three
of the four zeros correspond to the one-dimensional Nyquist wavenumbers (�/�x, 0), (0, �/�y)
along x- and y-directions, respectively, and its combination (�/�x, �/�y), the fourth to the lowest
(0, 0) i.e. the constant mode that one expected. Correspondence to the Nyquist frequencies, that
are associated to the minimum wavelengths 2�x, 2�y, indicates a decoupling of the neighbouring
nodes that must be carefully remedied since if the computation introduces for some reason such
modes into the velocity field, for example by the way of sharp gradients, they can no longer be
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removed. Spurious non-physical modes can make unfeasible the numerical solutions also because
of the fact that such modes can be amplified for high Reynolds number flows. Let us observe that,
for confined flows, suitable boundary conditions in the elliptic pressure equation can couple the
grids but such coupling is slowly transmitted in the interior and special linear algebra solvers must
be used. In literature, there are several proposals for remedying such problem, each one having an
appealing feature but manly accepting that some constraint in the EPM must be relaxed leading
to the class of the so-called APM.

According to the concept of APM given in References [14–27], the idea is to relax the
exact divergence constraint and to construct an approximate projector, say it simply P . How-
ever, P is no longer idempotent, i.e. (P)2 
= P , although a property of each approximation is that
(P)k → PH as k → ∞. After applying P on v∗

C , one has P(v∗
C ) = ṽn+1

C being the velocity ṽn+1
C

to be now considered an approximation to the exact divergence-free velocity field vn+1
C . In other

words, one allows that a local source mass is introduced by the velocity field ṽn+1
C .

In a largely used version of the APM, the grid coupling is obtained by using a discrete Laplacian
operator that is no longer LH but, following the MAC strategy for staggered grids, is defined as
application of the MAC divergence-gradient operators, e.g. see Reference [17], as

LMAC �DMACGMAC =
[
E�x/2 − E−�x/2

�x

E�y/2 − E−�y/2

�y

]
·

⎡⎢⎢⎣
E�x/2 − E−�x/2

�x

E�y/2 − E−�y/2

�y

⎤⎥⎥⎦
= E�x − 2I + E−�x

�x2
+ E�y − 2I + E−�y

�y2
(16)

Thus, one solves the elliptic problem constituted by the discrete Poisson equation wherein, as
in the EPM, the second-order approximation DMACv∗

C
∼= Dv∗

C is used in the source term along
with proper Neumann boundary conditions again derived from (11)

LMAC(�̃
n+1
C ) = 1

�t
DMACv∗

C

n · ∇�̃
n+1
C |�V = 1

�t
n · (v∗

C − vn+1
C )|�V

(17)

that provides a unique solution (apart a constant) for the scalar potential field, say now �̃
n+1
C to

distinguish it from that one of the EPM. The boundary condition n · ṽn+1
C =n · vn+1

C has been
prescribed in (17) in order for the compatibility condition to be satisfied.∗∗ It is easy to deduce
that the approximate projector P is now defined as

P � I − ∇
[
(∇MAC · ∇MAC)−1∇·

]
(18)

∗∗It is worthwhile observing that ṽ n+1
C = v∗

C − �t∇�̃
n+1

C must be correctly interpreted only in the sense of a
discrete approximation of the HHD (11) since, even if this decomposition exists, it consists of a component that is
divergence-free only for vanishing mesh sizes while the HHD theorem is rigorously addressed for an exact
divergence-free vector field.
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Then, the updated cell-centred velocity components in the APM are similar to those in EPM,
see Equation (13),

ũ n+1
C i, j = u∗

C i, j − �t
E�x − E−�x

2�x
�̃

n+1
C i, j

ṽ n+1
C i, j = v∗

C i, j − �t
E�y − E−�y

2�y
�̃

n+1
C i, j

(19)

since the discrete gradient field is approximated at second-order accuracy as (GMAC�̃
n+1
C )i, j ≈

(G�̃
n+1
C )i, j . As before addressed, the discrete divergence constraint (D̃vn+1

C )i, j cannot be driven
to zero, rather it tends ‘to converge to zero’ towards the local truncation error. Similarly, also the
divergence (DMACṽn+1

C )i, j cannot be driven to zero.
Now, even if there are still four non-divergence-free modes that are not recognizable by the

discrete divergence operator D̃vn+1
C the situation has changed for what it concerns the Laplacian

operator. In fact, again analysing the number of zeros of the Fourier symbol [14, 26], it can be shown
that LMAC(�̃

n+1
C ) has now a nullspace of dimension one. Clearly, owing to the compact stencil, there

are no longer zeros corresponding to the Nyquist frequencies (�/�x, 0), (0, �/�y), (�/�x, �/�y)
but only that one corresponding to the lowest (0, 0) i.e. the constant that one expected. Almgren
et al. [16] deduced the error in the approximate projection by specifying two components for the
velocity field, orthogonal each other, showing that the divergence error is related to the divergence
of the second orthogonal component. This fact can be also expressed as difference between (12)
and (18). It is easy to show the link of the local truncation error with fourth-order spatial derivative
of the potential field, according to �i, j =−�t((�x2/4)(�4�̃/�x4) + (�y2/4)(�4�̃/�y4))|i, j + · · ·,
see References [15, 20].

A different formulation of the APM is proposed by Rider [14, 26] motivated by the fact that
divergence and gradient velocities can still experience decoupling and suitable projection filters
must be applied to produce physically relevant solutions for long-time integration. In a more
general sense, one could consider, for example, that there is a filtering operator after the exact
projection, symbolically expressed as

˜̃vn+1
C = F(vn+1

C ) = F[PH (v∗
C )] (20)

˜̃vn+1
C indicating the velocity after projection filter, having the aim of eliminating spurious high
frequencies modes. Rider proposed an application of a diffusion-like operator �� I−∇[(Ld)−1∇·],
being Ld the diagonal of the discretized elliptic operator (on compact stencil) that substitute the
operator DG (on large stencil). Even if the diffusion-like operator is discretized in such a way to
result consistent to the formal second order accuracy of the method, it is designed as a Jacobian
relaxation having the property of damping high frequency error components as well as coupling the
modes. The method is practically implemented by computing first the APM step that provides the
field ṽn+1

C , then the Jacobi-like relaxation is performed to compute the field 	= (Ld)−1(∇ · ṽn+1
C ),

finally the update step allows to compute a velocity field ˜̃vn+1
C = ṽn+1

C − G	 that is filtered from
spurious high frequencies modes, although it is still affected by divergence errors. The projection

filter-based method symbolically writes as ˜̃vn+1
C = �[P(v∗

C )] from which one can recognize the
sequence (20). This method (Algorithm 1 referenced in References [14, 26]) is afterwards addressed
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as APMR. Rider also suggested the combination of vertex and edge-projection/velocity filters to
improve the quality of the solution when high gradients have to be taken into account. Moreover,
he also tested the improved solution for long-time integration but some heuristic constants were
necessarily introduced to modulate the excess of diffusion. Substantially, the projection filters are
designed in such a way that the local truncation error is second-order accurate, as the global
method, but it must be taken into account that the spectral distribution of the errors indicates a
diffusive behaviour of these operators.

From a different viewpoint, Dormy [25] proposed an APM formulation based on the use
of a sequence of two elliptic equations with the intention of obtaining a compact fourth-order
approximation of the operators used in the EPM. Again, he highlights that the method re-
mains second-order accurate but the local truncation error contains suitable terms able to cou-
ple high wavenumber modes by means of a dissipative-like operator. The numerical tests
reported by Dormy substantially highlight that rather than performing a single-step procedure
on a 19-points computational stencil and modifying the source term in the pressure equation,
is more convenient to perform a second elliptic equation on a 7-points stencil. In fact, it was
observed that the solution of a single elliptic equation on a wider stencil, although allowing
a good grid coupling, is less efficient in terms of computational effort being the number of
iterations almost three times greater than required by two consecutive elliptic on a compact
stencil.

In principle, any addition of artificial diffusion appears less critical when all flow scale compo-
nents are resolved, as is the case of DNS approaches, since the diffusive part of the real energy
spectrum is numerically resolved. Actually, much more critical appears the effect of adding dis-
sipation when the grid size is not able to capture the diffusive flow scales, i.e. when the Nyquist
frequencies lie in a region far from the viscous sub-range, as is the case of LES. In fact, since
both the momentum interpolation and the diffusion-like operators act on flow scales located in
the inertial sub-range, they affect just those that are then necessarily used in the turbulence model
and therefore can dramatically alter the energy transfer, e.g. see References [32, 33]. On the other
hand, Rider himself [14, 26] recognizes that the impact of filters is much positive for fully resolved
flows while he gave no analysis of turbulent simulations reporting the results only for a 2D inviscid
flow. Unfortunately, to the best of the authors’ knowledge, there are no published analyses of the
performance of projection-filters in LES applications.

Based on such observations, there appear two fundamental ideas from the previous methods
that constitute the basis of the DPM here illustrated:

(1) The EPM provides a divergence-free cell-centred velocity field vn+1
C along with diver-

gence-free linearly interpolated normal-face velocities. However, the adopted Laplacian
operator LH cannot eliminate non-divergent spurious modes generated at high wavenum-
bers. Basically, only line modes are possible with cell-centre collocation, see References
[14, 26].

(2) The APM uses a compact Laplacian operator LMAC that has only the constant mode, thus
grid coupling is ensured, but the exact mass conservation in terms of the cell-centred velocity
ṽn+1
C is not. However, the APM does ensure mass conservation in terms of the normal-face
velocities obtained by means of the intermediate field v∗

C along with the discrete gradient
field, without requiring interpolation of ṽn+1

C . Construction of the discrete divergence with
these velocities, which are staggered as in MAC method, can be indeed driven to zero at
machine accuracy.
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Therefore, the motivation of this paper is expressed by the question:
Is it possible to exploit the best characteristics of both methods by combining them in a single

formulation ensuring both mass conservation and grid coupling on non-staggered grids?
First, the observation (2) can be better explained as follows. Once a solution of problem (17)

has been obtained, one can directly update, in each FV (see Figure 3), the normal-face velocities,

say un+1
f i±1/2, j , v

n+1
f i, j±1/2 by means of the discrete solution set (u∗

C , v∗
C , �̃

n+1
C ). Such velocities are

staggered in their nature as in MAC arrangement according to

un+1
f i+1/2, j = u∗

C i+1/2, j − �t
E�x − I

�x
�̃
n+1
C i, j

un+1
f i−1/2, j = u∗

C i−1/2, j − �t
I − E�x

�x
�̃
n+1
C i, j

vn+1
f i, j+1/2 = v∗

C i, j+1/2 − �t
E�y − I

�y
�̃
n+1
C i, j

vn+1
f i, j−1/2 = v∗

C i, j−1/2 − �t
I − E�y

�y
�̃
n+1
C i, j

(21)

wherein, the linear interpolation,

u∗
C i±1/2, j

∼=
u∗
C i±1, j + u∗

C i, j

2
, v∗

C i, j±1/2
∼=

v∗
C i, j±1 + v∗

C i, j

2
(22)

allows us to get the normal-face velocities that formed the source term DMACv∗
C in the Poisson

equation (17). Therefore, the velocities (21) create a discrete velocity field, say vn+1
f , that ensures

(at least at the tolerance of an iterative procedure used for the Poisson equation) that

DMACvn+1
f �

un+1
f i+1/2, j − un+1

f i−1/2, j

�x
+ vn+1

f i, j+1/2 − vn+1
f i, j−1/2

�y
= 0 (23)

is in ensured up to machine accuracy, as it is easily shown by substituting (21) in Equation (23)
and recognizing that the Poisson equation (17), which has been already satisfied, is obtained.

Thus, after solving the Poisson problem (17), the first step of the DPM formulation consists of
computing the staggered set of normal-face divergence-free velocities {un+1

f }, {vn+1
f } given in (21).

Hence, at this stage:

• owing to the compact stencil of the operator LMAC, spurious high frequencies modes are
eliminated,

• the discrete MAC divergence (23) is satisfied, i.e. DMACvn+1
f = 0,

• but the cell-centred divergence is not yet, i.e. DMACṽn+1
C 
= 0.

The last point is easily demonstrated by linearly interpolating (19) for computing the normal-
face velocities ũ n+1

C i±1/2, j , ṽ
n+1
C i, j±1/2 and comparing the result with the velocities (21). Thus, the

aim of the DPM is to correct (19) in order for a divergence-free discrete cell-centred velocity to
be produced.
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In principle, one could substitute the step (19) with a different velocity update that can be
constructed in such a way that the new cell-centred velocity is obtained by imposing that a linear
interpolation on the faces produces the known values computed in (21). This procedure can be
implemented in an iterative way until one gets DMACṽn+1

C =DMACvn+1
f = 0 and ensures mass

conservation by completing the update step. Actually, some tests we performed on channel flow
(here not reported) were not satisfactory since they demonstrated an excessive numerical dissipation
intrinsic to this procedure. Therefore, although could be still improvable, this procedure has been
abandoned and a different strategy is now enforced.

The goal is to enforce the discrete mass conservation in terms of the cell-centred velocity while
not altering the vorticity field as instead can happen by using the momentum interpolation method
or the diffusion-like operator �. For obtaining this goal, any correction done on ṽn+1

C should be
expressed in a potential form. Hence, the second step in the DPM is direct consequence of the HHD
theorem. Let us assume that an exact projector acts on a non-solenoidal vector field w to provide
the desired divergence-free velocity field, that is PH (wC ) = vn+1

C . The idea is to assume that the
non-solenoidal field w, to be decomposed, is nothing else that ṽn+1

C = P(v∗
C ), namely that field that

the approximate projector P was not able to ensure being exactly divergence-free. In conclusion,

one gets vn+1
C = PH [P(v∗

C )] and, in terms of the HHD (11), one writes wC = ṽn+1
C = v∗

C−�t∇�̃
n+1
C

so that

wC = vn+1
C + �t∇ f n+1

C ⇒ vn+1
C = v∗

C − �t∇�̃
n+1
C − �t∇ f n+1

C (24)

where the second potential field, say f n+1
C , is collocated in the cell-centres (see Figure 3). Starting

from Equation (24), one imposes (DMACvn+1
C ) = 0 that drives us to write from (24) DMACG f n+1

C =
((1/�t)DMACv∗

C − DMACG�̃
n+1
C ). The second-order approximations (DMACv∗

C ) ∼= (Dv∗
C ) and

DMACG f n+1
C

∼= DG f n+1
C = LH ( f n+1

C ) allow us†† solving the elliptic problem constituted by
a Poisson equation with a suitable source term along with appropriate homogeneous Neumann
boundary conditions (since in (17) n · ṽn+1

C =n · vn+1
C has been imposed),

LH ( f n+1
C ) = 1

�t
∇ · v∗

C − LH

(
�̃
n+1
C

)
n · ∇ f n+1

C |�V = 0

(25)

that ensure the existence of a solution since the compatibility condition is satisfied. It is worthwhile

observing that since LMAC(�̃
n+1
C )−(1/�t)Dv∗

C = 0 is satisfied from the first APM step (17), Equa-

tion (25) can be also rewritten as LH ( f n+1
C ) = (LMAC − LH )(�̃

n+1
C ). Actually, it is better to use the

††Consider that, for example in x-direction component, at a second-order approximation one has

(DMACG)x f
n+1
C =

( E�x/2 − E−�x/2

�x

)(
E�x − E−�x

2�x

)
f n+1
C

=
( E3�x/2 − E�x/2 − E−�x/2 + E−3�x/2

2�x2

)
f n+1
C

∼=
(
E2�x − 2 + E−2�x

4�x2

)
f n+1
C = (LH )x ( f

n+1
C )
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form (25) since, if an iterative procedure was used for solving (17), the residual automatically intro-
duced as source term for computing the second potential and limiting the accumulation of the error.

Finally, after solving (25), the updated divergence-free velocities write

un+1
C i, j = ũ n+1

C i, j − �t
E�x − E−�x

2�x
f n+1
C i, j

vn+1
C i, j = ṽ n+1

C i, j − �t
E�y − E−�y

2�y
f n+1
C i, j

(26)

wherein one must again substitute the (19). It is easy to verify that the discrete divergence Dvn+1
C

can now be driven to zero at machine accuracy.
Let us now discuss how the three formulations are implemented when non-homogeneous flows

are considered.

5. SETTING OF THE BOUNDARY CONDITIONS FOR EPM, APM,
APMR AND DPM FORMULATIONS

In this section, the attention is focused on the way of setting the boundary conditions for the
elliptic problems. Actually, we are interested in setting the conditions in one non-homogeneous
direction that is chosen to be the vertical y-direction. In the present study, the boundary con-
ditions prescribe the periodicity along the homogeneous x-directions while, along the verti-
cal direction y, one must prescribe the proper pressure gradient allowing the correct flow rate
through the flux surface. This is obtained by setting only the correct velocity normal to the
boundary. Furthermore, compatibility conditions ensuring the existence of a solution must be also
fulfilled.

Hence, the previous formulations, EPM, APM and DPM, are addressed and compared, high-
lighting their specific features when a second-order spatial discretization is used. In the direction
with periodic boundary conditions, there are no particular problems; the gradients being linked to
the specific opposite side. This is performed by linking the values at i = 1 with those at i = Nx
and the values at i = Nx + 2 with those at i = 2.

In the particular grid that is here used, already described in Section 3 (see Figures 1 and 2),
the points on the boundaries y = 0 and Ly are explicitly added without using ghost points. This
means that also in case of uniform grids, that is hy( j) = �y, there is a different way of proceeding
in setting the boundary conditions because two nodes adjacent on a boundary in vertical direction
separate each other of only half mesh size.

Let us start illustrating the EPM formulation. Recall that from Equation (13), by imposing
(Dvn+1

C )i j = 0, one gets LH (�n+1
C ) = (1/�t)Dv∗

C that can be also written in a point i, j as

1

2�x

(
��

�x

∣∣∣∣n+1

i+1, j
− ��

�x

∣∣∣∣n+1

i−1, j

)
+ 1

2�y

(
��

�y

∣∣∣∣n+1

i, j+1
− ��

�y

∣∣∣∣n+1

i, j−1

)

= 1

�t

(
u∗
C i+1, j − u∗

C i−1, j

2�x
+ v∗

C i, j+1 − v∗
C i, j−1

2�y

)
(27)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1127–1172
DOI: 10.1002/fld



1144 A. APROVITOLA AND F. M. DENARO

j+1=m

j=m-1

j-1=m-2

ym-2

ym-1{∆y

ym

j-2=m-3

ym-3

∆y/ 2

Figure 2. Sketch of the stencil where boundary conditions for the pressure equation are prescribed.

wherein the derivatives of the potential field are expressed by (17) and drive to (20). By prescribing
a non-homogeneous Neumann condition according to Equation (11) projected along the direction
j, one has

��

�y

∣∣∣∣n+1

i, jbnd
= 1

�t

(
v∗
C i, jbnd − vn+1

C i, jbnd

)
(28)

being vn+1
C i, jbnd a known value, where (see Figures 1 and 2) jbnd= 1 or Ny + 2≡m.

For example, if one considers the upper frontier (see Figure 2) located at jbnd=m, then
Equation (27) must be suitably rewritten for each node having j =m − 1 as

1

2�x

(
��

�x

∣∣∣∣n+1

i+1,m−1
− ��

�x

∣∣∣∣n+1

i−1,m−1

)
+ 1

ym − ym−2

(
��

�y

∣∣∣∣n+1

i,m
− ��

�y

∣∣∣∣n+1

i,m−2

)

= 1

�t

(
u∗
C i+1,m−1 − u∗

C i−1,m−1

2�x
+ v∗

C i,m − v∗
C i,m−2

ym − ym−2

)
(29)
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Now, by substituting the condition (28) in (29), since for a uniform grid ym − ym−2 = 3�y/2,
one gets (

E2�x − 2I + E−2�x

4�x2
− I − E−2�y

3�y2

)
�n+1
C i,m−1

= 1

�t

(
u∗
C i+1,m−1 − u∗

C i−1,m−1

2�x
+ vn+1

C i,m − v∗
C i,m−2

3�y/2

)
(30)

and a similar equation is obtained at j = 2. It is easy to show, for example again by looking at the
dimension of the nullspace, that while using (30) checkerboard modes are still possible. However,
it appears that numerical boundary conditions are also necessaries at points having j =m−2 (and
j = 3). In fact, rewriting (27) in the form (20), one has that the value �n+1

C i,m needs to be prescribed.
A way could be to discretize the Neumann boundary condition (28) and to deduce a relation for
�n+1
C i,m . A simpler possibility could be to use the Neumann boundary condition �n+1

C i,m = �n+1
C i,m−1.

For special test cases, one could also prescribe Dirichlet boundary conditions but the stencil is still
suitable to produce oscillating solutions. In any case, a local re-coupling of the grid points that
can also ‘diffuse’ in all other points appears very weak.

Let us now discuss the APM formulation. Recall that from (19) the elliptic equation is

LMAC(�̃
n+1
C ) = (1/�t)DMACv∗

C ≈ (1/�t)Dv∗
C , discretized on the MAC stencil, that can be rewritten

in a point i, j as

1

�x

⎛⎝ ��̃

�x

∣∣∣∣∣
n+1

i+1/2, j

− ��̃

�x

∣∣∣∣∣
n+1

i−1/2, j

⎞⎠+ 1

�y

⎛⎝ ��̃

�y

∣∣∣∣∣
n+1

i, j+1/2

− ��̃

�y

∣∣∣∣∣
n+1

i, j−1/2

⎞⎠
= 1

�t

(
u∗
C i+1/2, j − u∗

C i−1/2, j

�x
+ v∗

C i, j+1/2 − v∗
C i, j−1/2

�y

)
(31)

Now, considering again the upper frontier located at jbnd=m, since ym−y−
m−1 = y+

m−1−
y−
m−1 =�y, one gets from (28) �̃y |n+1

i, j+1/2=�̃y |n+1
i,m =(v∗

C i,m−vn+1
C i,m)/�t , being v∗

C i, j+1/2 = v∗
C i,m ,

and owing to the use of the operator GMAC�̃
n+1
C and Equations (22), (31) is suitably rewritten for

each node having j =m − 1 as(
E�x − 2I + E−�x

�x2
− I − E−�y

�y2

)
�̃
n+1
C i,m−1

= 1

�t

[
u∗
C i+1,m−1 − u∗

C i−1,m−1

2�x
+ vn+1

C i,m − 0.5(v∗
C i,m−1 + v∗

C i,m−2)

�y

]
(32)

There is no necessity to specify other numerical boundary conditions, as instead was required
in EPM, a strong coupling is retained therefore only the constant mode is possible in the LMAC

operator. However, it is expected that divergence error could be of prevalent magnitude near the
boundaries.

Finally, let us examine the DPM formulation. The first phase of the boundary conditions setting is
exactly the same already described for the APM formulation by means of Equations (31) and (32).
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The second phase is performed by considering Equation (26) and imposing that (DMACvn+1
C ) = 0

that drives us to write the equation DMACG f n+1
C = ((1/�t)DMACv∗

C − DMACG�̃
n+1
C ). As pre-

viously shown, in the interior points, the second-order approximations (DMACv∗
C ) ∼= (Dv∗

C ) and
DMACG f n+1

C
∼=DG f n+1

C = LH ( f n+1
C ) allow us solving the elliptic equation LH ( f n+1

C ) =
(1/�t)∇ · ṽn+1

C = (1/�t)∇ · v∗
C − LH (�̃

n+1
C ) that can be also rewritten in a point i, j as

1

2�x

(
� f

�x

∣∣∣∣n+1

i+1, j
− � f

�x

∣∣∣∣n+1

i−1, j

)
+ 1

2�y

(
� f

�y

∣∣∣∣n+1

i, j+1
− � f

�y

∣∣∣∣n+1

i, j−1

)

= 1

�t

(
u∗
C i+1, j − u∗

C i−1, j

2�x
+ v∗

C i, j+1 − v∗
C i, j−1

2�y

)

− 1

2�x

⎛⎝ ��̃

�x

∣∣∣∣∣
n+1

i+1, j

− ��̃

�x

∣∣∣∣∣
n+1

i−1, j

⎞⎠+ 1

2�y

⎛⎝ ��̃

�y

∣∣∣∣∣
n+1

i, j+1

− ��̃

�y

∣∣∣∣∣
n+1

i, j−1

⎞⎠ (33)

resembling the same structure of Equation (27). Equation (33) must be associated to suitable
boundary conditions that allow us to verify the compatibility condition ensuring the existence of a
solution f n+1

C (apart a constant). Therefore, according to Equation (28), homogeneous Neumann
boundary conditions must be prescribed

� f

�y

∣∣∣∣n+1

i, jbnd,k
= ��̃

�y

∣∣∣∣∣
n+1

i, jbnd,k

− 1

�t
(v∗

i, jbnd,k − vn+1
i, jbnd,k) = 0 (34)

at jbnd= 1 and jbnd=m.
To better clarify how the boundary conditions are implemented, let us restart from the constraint

(DMACvn+1
C )i j = 0 that has been imposed in the DPM. Actually, it will be shown that this is the

key-difference from the EPM method, in which was instead imposed (Dvn+1
C )i j = 0, leading to a

different expression when non-periodical boundary conditions are in effect. In fact, if one would
substitute (34) in (33), then one obtains nothing else that the same structure of the EPM equation that
has been shown to produce uncoupled grids also near the boundary. Differently, since at a point hav-
ing j =m−1 the value vn+1

C i, j+1/2 = vn+1
C i,m is known, one writes the discrete continuity constraint as

(DMACvn+1
C )i,m−1 = un+1

C i+1,m−1 − un+1
C i−1,m−1

2�x
+ vn+1

C i,m − 0.5(vn+1
C i,m−1 + vn+1

C i,m−2)

�y
= 0 (35)

and substitutes in it the (26),

1

2�x

(
ũ n+1
C i+1,m−1 − �t

E�x − E−�x

2�x
f n+1
C i+1,m−1 − ũ n+1

C i−1,m−1

−�t
E�x − E−�x

2�x
f n+1
C i−1,m−1

)
+ 1

�y

[
vn+1
C i,m − 0.5

(
ṽ n+1
C i,m−1

−�t
E�y − E−�y

2�y
f n+1
C i,m−1 + ṽ n+1

C i,m−2 − �t
E�y − E−�y

2�y
f n+1
C i,m−2

)]
= 0 (36)
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getting

f n+1
C i+2,m−1 − 2 f n+1

C i,m−1 + f n+1
C i−2,m−1

4�x2
− f n+1

C i,m + f n+1
C i,m−1 − f n+1

C i,m−2 − f n+1
C i,m−3

4�y2

= 1

�t

[
ũn+1
C i+1,m−1 − ũn+1

C i−1,m−1

2�x
+ vn+1

C i,m − 0.5(ṽn+1
C i,m−1 + ṽn+1

C i,m−2)

�y

]
(37)

From a discrete viewpoint, it is still necessary to prescribe in (37) a suitable condition for
expressing the value f n+1

C i,m while respecting (34). Although a higher order relation can be used,
a congruent discretization that verifies the compatibility condition, leaving unaltered the strong
coupling, could be simply imposed by setting f n+1

C i,m = f n+1
C i,m−1. When compared to the single

EPM equation (30), the resulting equation is self-explicative of the different behaviour and good
coupling one gets near the boundary since all adjacent nodes are involved. It can be shown that if
the Fourier symbol of the operator is analysed, the zero corresponding to the Nyquist frequency
along y has been eliminated, that is y-edge non-divergent line modes cannot be generated at
this boundary. In other words, the same effect of the local projection filter proposed by Rider is
mimed. Finally, the same procedure applies also at points j =m − 2 since one can consider the
approximation to (34)(

f n+1
C i,m − f n+1

C i,m−1

ym − ym−1

)
=
⎛⎝ �̃

n+1
C i,m − �̃

n+1
C i,m−1

ym − ym−1

⎞⎠− 1

�t
(v∗

C i,m − vn+1
C i,m) = 0 (38)

therefore one must set �̃
n+1
C i,m = �̃

n+1
C i,m−1 + (ym − ym−1)(v

∗
C i,m − vn+1

C i,m)/�t in the RHS of (37).
Finally, a last observation is devoted to a way of setting the boundary conditions for im-

plementing the APMR formulation because Rider in References [14, 26] analysed only periodic
boundary conditions. Once 	i, j = (Ld)−1

i, j (D̃v
n+1
C ) is computed in the inner nodes, from the update

step (see (20)) evaluated on the boundaries and projected along the normal direction, assum-
ing a known unique value for the normal component of the velocity, one can write n · G	|bc =
n · (̃vn+1

C −˜̃vn+1
C )|bc = 0 thus setting homogeneous Neumann boundary condition. However, from

a rigorous point of view, this type of boundary condition does match the requirement of sat-
isfying the compatibility condition for the existence of a solution only if

∫
�V n · ṽn+1

C dS = 0
is ensured. In the following simulations, the conditions 	i,m = 	i,m−1 and 	i,1 = 	i,2 will be
prescribed.

6. DISCUSSION

It is worthwhile reminding that a wide literature on stability and accuracy analyses for projection
methods already exists, see References [19, 28–30, 34–45]. It is not the aim of this study to
deduce new insights on such general topics, analyses of APMs being still a current issue of
studies. Anyway, some of the issues concerning the DPM are now briefly addressed; a stability
study can be performed according to what illustrated in Reference [19] that is, considering the
time-dependent, one-dimensional Stokes problem with homogeneous boundary conditions on the
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velocity. The resulting system can be diagonalized and the intermediate velocity can be eliminated
to find the linear operator that advances the velocity in time. The eigenvalues of the evolution
operator determine the stability as well as the accuracy of the discrete projection. For the sake of
brevity, only a few result of the analysis is reported and some comments (that are more focused
on heuristic considerations) are now addressed. Stability of the DPM for non-periodic flows will
be checked numerically by means of the test-cases reported in the next section.

The first comment concerns the form of the projector resulting in the DPM. For the sake of
simplicity, let us discuss the case of double periodic boundary conditions. The DPM is first based
onto the approximate projection ṽn+1

C = P(v∗
C ) then the exact projection vn+1

C = PH (ṽn+1
C ) extract

the divergence-free velocity field collocated onto the cell-centres. This way, one satisfies both the
constraint Dvn+1

C = 0 and DMACvn+1
f = 0. By means of their definitions (12) and (18), one can

define the successive product of the projectors according to

PDPM � PH (P) = [I − G(LH )−1D][I − G(LMAC)−1D]
= I − G[(LH )−1 + (LMAC)−1]D + [G(LH )−1D][G(LMAC)−1D]
= I − G[(LH )−1 + (LMAC)−1 − (LH )−1DG(LMAC)−1]D
= I − G(LH )−1D� PH (39)

therefore deducing that, for doubly periodic boundary conditions, the two subsequent projections
in the DPM are equivalent to a single exact one (Figure 3).

It is possible to deduce a more detailed discussion by adopting the spectral analysis as
reported in Reference [27], thereafter extended to three dimensions. Consider the block-matrices
notation (18)–(20), (15) and (16) now completed up to the third dimension z. For the sake
of simplicity, let us call with 
x , 
y, 
z the components (18) of D being GT = D and with
�x , �y, �z the components (15) of DMAC being (GMAC)T = DMAC. Of course, such components
are composed of combinations of discrete shift operators acting in separate directions, thus
powers of the components indicate a sequence of repeated applications of the operators, for
example �2x = (E�x/2 − E−�x/2)(E�x/2 − E−�x/2)/�x2 = (E�x − 2I + E−�x )/�x2. For periodic
problems, the Fourier components result eigenvectors of G and GMAC therefore one could also
define as 
x , 
y, 
z and �x , �y, �z the eigenvalues of the x , y, and z discrete derivatives appearing
in the gradient and divergence operators, e.g. see Reference [27].

Now, we can express the EPM (12) and APM (18) projectors in matrix notation as

PH = 1


2x + 
2y + 
2z

⎡⎢⎢⎢⎣

2y + 
2z −
x
y −
x
z

−
x
y 
2x + 
2z −
y
z

−
x
z −
y
z 
2x + 
2y

⎤⎥⎥⎥⎦ (40)

P = 1

�2x + �2y + �2z

⎡⎢⎢⎢⎣
�2x + �2y + �2z − 
2x −
x
y −
x
z

−
x
y �2x + �2y + �2z − 
2y −
y
z

−
x
z −
y
z �2x + �2y + �2z − 
2z

⎤⎥⎥⎥⎦ (41)
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, 1/ 2i j +

, 1/ 2i j −

Figure 3. Sketch of the variables collocation used in the double projection method.

they are symmetric and it is possible to assume that are both diagonalizable according to

PH = RH�H (RH )−1, P = R�(R)−1 (42)

where �H and � are diagonal matrices containing the real eigenvalues and RH and R are the
matrices of the right eigenvectors of (40) and (41), respectively whereas the eigenvectors
(orthogonal each others) are also coincident. By recursive applications one gets

(PH )k = RH (�H )k(RH )−1, (P)k = R(�)k(R)−1 (43)
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with

�H =

⎡⎢⎢⎣
0 0 0

0 1 0

0 0 1

⎤⎥⎥⎦ , �=

⎡⎢⎢⎢⎢⎢⎣
1 − 
2x + 
2y + 
2z

�2x + �2y + �2z
0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦ (44)

Equations (43) and (44) can be adopted for stability as well as accuracy analyses of the
projection methods, as extensively reported in literature. Of course, it is confirmed that the
EPM projector PH is idempotent, (�H )k =�H , while the APM projector P has the eigenvalue
�1 = 1 − [(
2x + 
2y + 
2z )/(�

2
x + �2y + �2z )] that reflects its nature of approximate method since it

is not always zero. Moreover, it can be seen that limk→∞ �k = �H . Now, considering a generic
Fourier component eik·x (k is the wavenumber vector), while applying the shift operators previ-
ously defined on it, that is for example E�xeik·x = ei[kx (x+�x)+ky y+kz z] = eik·xeikx�x and similarly
for other directions, one gets

�1 = 1 − (cos(kx2�x) + cos(ky2�y) + cos(kz2�z) − 3)

4(cos(kx�x) + cos(ky�y) + cos(kz�z) − 3)

thus reporting the analysis into the Fourier space. Hence, the most critical situation appears again
at Nyquist frequencies and at the constant mode. There is only the chance that the eigenvector
associated to �1 can control spurious non-divergence-free modes as reported in Reference [27].

For what concerns the analysis of the DPM formulation it can be shown, by means of matrix mul-
tiplication, that the product between (40) and (41), that is the projector PDPM, is exactly equal to the
matrix PH confirming the (39). From a side, this aspect highlights that the product PDPM = PH (P)

is idempotent (even if the single P is not) in terms of the exact projector, since from (43) one
has [PH (P)]k = RH (�H )k(RH )−1R(�)k(R)−1 = RH (�H )(RH )−1 and also PDPM(PH ) = PH as
well as the projector PDPM is bounded. Furthermore, considering (24), one can easily see that
∇ f n+1

C = (1/�t)(PDPM − P)(v∗
C ) this difference depending on (44), that is on the eigenvalue �1.

Hence, concerning the DPM formulation one can consider valid the well-known stability properties
of the projection method already analysed in several studies [13, 19, 21, 30, 34–45].

On the other side, for doubly periodic conditions, one can consequently state that the DPM
reduces to nothing else but a single EPM on a large stencil. In other words, according to (24)
one could be tempted to directly redefine the (11), that is to use the decomposition v∗

C = vn+1
C +

�t∇�n+1
C , with ∇�n+1

C �∇(�̃
n+1
C + f n+1

C ), and solve, without performing the APM step, the
resulting single elliptic problem for �n+1

C that exactly reduce to the (21), thus with existing
checkerboard modes. Consequently, the DPM formulation would fail its task.

Actually, this conclusion is not correct. First, this is not the case when non-homogeneous flows
are considered because near a boundary PH (P) 
= PH , owing to the particular choice of imposing
DMACvn+1

C = 0. More specifically, even if the matrix (41) remains formally the same, the product is
performed with a modified matrix, say Pbc

H instead of using (40). As it is shown by (35) and (37),
near a boundary a compact stencil acts as a sort of local projection-filter along the y-direction.
This can also be seen by means of the Fourier analysis.

What is more, an important feature of the DPM exists, that differentiates it from the single
EPM also in case of periodic flows and is better highlighted in what follows. In fact, in case one
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would reduce the DPM to a single EPM formulation then it will be lost the chance of using the
discrete (staggered) divergence-free velocity field vn+1

f that derives from the solution of the APM

step. Remember that in the EPM, one can use only the normal-face velocities un+1
C i±1/2, j , v

n+1
C i, j±1/2

provided by interpolation (14) (as performed in the so-called traditional non-staggered grid [24]
with or without adopting the momentum interpolation method or any other artificial dissipation
terms). However, they would be obtained from a field computed on large stencil while in the DPM
the field vn+1

f is obtained on a MAC (compact) arrangement. In other words, a supplementary
specific feature of the DPM is that any linear interpolation (14) that would have been necessary for
computing the normal-face values in (10) is substituted directly by the field vn+1

f , see Equation (21),
that is, conversely, obtained by means of a MAC-like projection. On the other hand, also in
References [14, 26] is suggested to apply the projection filters in such a way to act only on the
normal-edge velocities, this way accordingly to what is here performed. Interestingly, the use of
the two divergence-free velocity fields vn+1

C and vn+1
f can be related to what proposed in other

formulations, see References [21, 23, 45].
In order for better clarifying this point let us consider the following example. The linearly

interpolated single EPM-based normal-face x- component obtained by means of (14) is

un+1
C i+1/2, j = un+1

C i+1, j + un+1
C i, j

2

= u∗
C i+1, j + u∗

C i, j

2
− �t

2

(
E2�x − I

2�x
+ E�x − E−�x

2�x

)
�n+1
C i, j (45)

whereas, from the APM step, the staggered MAC projection-based one (21) is

un+1
f i+1/2, j =

u∗
C i+1, j + u∗

C i, j

2
− �t

E�x − I

�x
�̃
n+1
C i, j (46)

Therefore, their difference writes as

un+1
f i+1/2, j − un+1

C i+1/2, j = −�t
E�x − I

�x
�̃
n+1
C i, j

+�t

2

(
E2�x + E�x − I − E−�x

2�x

)
(�̃

n+1
C i, j + f n+1

C i, j )

= �t

4

[(
E2�x + E�x − I − E−�x

�x

)
f n+1
C i, j

+
(
E2�x − 3E�x + 3I − E−�x

�x

)
�̃
n+1
C i, j

]
(47)

and is easy to recognize in (47) terms that are those handled in the momentum interpolation
methods [20] with the intention of coupling the spurious solutions.

Again, some further insight can be produced by inspecting the form of the projector associated
to the velocity vn+1

f . Consider (21), remembering that in the APM formulation one formally
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has �̃
n+1
C = (1/�t)(∇MAC · ∇MAC)−1(∇ · v∗

C ), it results (for the sake of simplicity only in two
dimensions and periodic boundary conditions)

un+1
f i+1/2, j = E�x + I

2
u∗
C i, j − E�x − I

�x
(∇MAC · ∇MAC)−1(∇ · v∗

C )i, j

vn+1
f i, j+1/2 = E�y + I

2
v∗
C i, j − E�y − I

�y
(∇MAC · ∇MAC)−1(∇ · v∗

C )i, j

(48)

so that, symbolically one defines vn+1
f = Pf (v∗

C ) with the associated projector Pf (that, however,
is not the projector resulting in the real MAC method) written as

Pf � M f − G f [(∇MAC · ∇MAC)−1∇·] (49)

being M f the matrix accounting for the linear interpolation of v∗
C and G f the discrete gradient

operator

M f � 1

2

[
E�x + I 0

0 E�y + I

]
, G f �

⎡⎢⎢⎣
E�x − I

�x

E�y − I

�y

⎤⎥⎥⎦ (50)

According to what already performed above, let us call mx ,my and 
x , 
y the components of
M f and G f , respectively. The projector, expressed in matrix notation, is

Pf = 1

�2x + �2y

⎡⎣mx (�
2
x + �2y) − 
x
x −
x
y

−
y
x my(�
2
x + �2y) − 
y
y

⎤⎦ (51)

and it can be seen that it is no longer symmetric and the two eigenvalues are

�1,2 = 1

2�2x + �2y
[(mx + my)(�

2
x + �2y) − (
x
x + 
y
y) ± √

�] with

� = (�2x + �2y)
2(mx − my)

2 + (
x
x + 
y
y)
2 − 2(�2x + �2y)(
x
x − 
y
y)(mx − my)

(52)

Again, after some manipulation, a representation of (52) in the Fourier space indicates the
characteristic of the MAC projector Pf . The modulus of the first eigenvalue practically vanishes
everywhere, the modulus of the second eigenvalue gets one for the one-dimensional directions as
is reported in Figure 4. This analysis could be repeated also for determining the projector structure
of the normal-face velocities un+1

C i+1/2, j , v
n+1
C i, j+1/2, interpolated according to (45), but for the sake

of brevity, is here not reported and we will directly demonstrate the numerical performance of the
DPM in the next section.

Eventually, according to the previous observations, owing to the adopted grid system, a second-
order FV discretization of (10) can be obtained by means of the simple mean values formula in
the face centre. The discretization of the surface integrals (lines in two dimensions) is performed
at second-order accuracy by means of the face-normal values. Starting from Equation (10), one
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Figure 4. Representation of the modulus of the second eigenvalues in (64) as function
of the 2D wavenumber components in [0, �]2.

writes in two dimensions(
I − ��t

2

E�y − 2I + E−�y

�y2

)
v∗
C i, j

=
(
I + ��t

2

E�y − 2I + E−�y

�y2

)
vnC i, j

+�t

2

[
3

(
�
E�x − 2I + E−�x

�x2
vnC i, j − unf i+1/2, jq

n
i+1/2, j − unf i−1/2, jq

n
i−1/2, j

�x

−vnf i, j+1/2q
n
i, j+1/2 − vnf i, j−1/2q

n
i, j−1/2

�y

)
−
(

�
E�x − 2I + E−�x

�x2
vn−1
C i, j

−un−1
f i+1/2, jq

n−1
i+1/2, j − un−1

f i−1/2, jq
n−1
i−1/2, j

�x
− vn−1

f i, j+1/2q
n−1
i, j+1/2 − vn−1

f i, j−1/2q
n−1
i, j−1/2

�y

)]
(53)
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where the flux-velocity vector q is defined as

qi±1/2, j = iu f i±1/2, j + j
vC i, j + vC i±1/2, j

2

qi, j±1/2 = i
uC i, j + uC i, j±1/2

2
+ jv f i, j±1/2

(54)

in which only one of the two addends is in effect for each direction. It is clear that the particular
structure of Equations (53) and (54) highlights that v∗

C = v∗
C (vnC , vnf , v

n−1
C , vn−1

f ), coupling the fields
coming from the two projections PDPM(v∗

C ), Pf (v∗
C ). It is worthwhile addressing that Equation (53)

is associated to the intermediate boundary conditions prescribed according to the new higher order
formulation described in References [8, 12, 28, 29], valid both in DNS and LES.

The next section illustrates the numerical results while comparing the formulations previously
illustrated. It is worthwhile reminding that, thereafter, the acronym APM indicates that the MAC
divergence-free normal-face velocity vn+1

f is used, as described by (46), (53) and (54), whilst the
acronymAPM2 indicates that the normal-face velocity are those obtained from a linear interpolation
of vn+1

C , according to (14). Of course, for the APM2, Equations (53) and (54) are modified by
substituting the velocity vn+1

f with vn+1
C . Furthermore, once the APM step is performed, the

acronymDPM indicates that it is followed by the second decomposition (24) whilst APMR indicates

that is followed by the projection filter-based step ˜̃vn+1
C =�( ṽn+1

C ). However, it is important to
clarify that the present APMR formulation cannot be intended as the meticulous implementation
of the method proposed in References [14, 26]. Therein an incremental projection as well as a
Godunov method for convection is used differently from what is used by us. Thus, the aim is
only to analyse the performance of the projection filter step when applied to the APM formulation
here used.

7. NUMERICAL RESULTS: ACCURACY ANALYSIS, LONG-TERM BEHAVIOUR
AND COMPUTATIONAL EFFICIENCY

In this section, three kinds of numerical experiments are illustrated. They are the 2D Taylor-vortex
viscous solution, for which one exploits the analytical solution for performing a convergence study,
e.g. see References [8, 12, 21, 28, 31] and a 2D vortex-in-a-box inviscid flow problem for which
one tests the long-term behaviour, e.g. see References [14, 26]. Analyses and comparisons of the
performance of the DPM and the other formulations are provided.

The CPU time spent in solving the elliptic problems represents, generally, the largest part of
the total computational time in the code, therefore we started testing two sequential algorithms,
specifically the preconditioned GMRES solver, included in the SPARSKIT packet, and an optimized
explicit point SOR procedure suitably developed by ourselves. We experienced that, while using
a grid with 106 unknowns, the SOR method performed much better than GMRES in terms of
CPU time (the memory occupation is not comparable). Of course, owing to the dependencies in
the Seidel process, the SOR implementation needs specific care in order for parallelization to be
practicable. Thus, dependences were eliminated by choosing a ‘colouring technique’ based on a
red–black colouring in the (i, j) plane (in case of 3D code, one can alternate the cycles in the
k plane). At present, the parallelization was obtained by means of the OpenMP directives. This
algorithm was successfully tested on several SMP machines and performed sufficiently fine for
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our aims on the IBM SP5 of the CINECA on four processors. Of course, such a technique is
effective only in solving the APM step whereas the second elliptic in the DPM formulation cannot
similarly parallelized. In fact, the large computational stencil does not allow the same colouring
technique. In the future, we intend to study the possibility of using multigrid methods for such
problems, at present we used a sequential SOR. Solving the elliptic equations, a tolerance of 10−9

for all iterative solvers, to be reached by the L2 norm of the residual, is fixed. The aim of these
computations is to demonstrate the real accuracy as well as the stability behaviour, regularity in
terms of the y-edge non-divergent line modes and the efficiency of the DPM.

The Taylor-vortex test-case is performed in the non-dimensional domain V =[0, 2�] × [0, 1] at
unitary Reynolds number. The choice of this domain is motivated by the fact that the analytical
solution

u(x, y, t) = − cos x sin y e−2t

v(x, y, t) = sin x cos y e−2t

p′(x, y, t) = −0.25(cos 2x + cos 2y) e−4t

(55)

produces a decomposition (11) that is not orthogonal over it therefore the pressure error can enter
into the velocity making this test more critical than it would be in a domain where the decom-
position is orthogonal, see References [8, 28–31]. For this reason, periodic boundary conditions
are prescribed only in x-direction while Dirichlet ones are imposed at y = 0, 1. The integration is
performed up to the time T = 0.3 and the convergence test is performed by reducing progressively
the mesh size h, maintained uniform in both directions, from 1

10 to 1
50 while taking constant the

rate �t/h = 2.5× 10−3 that is a sufficiently small value to ensure the numerical stability. The L∞
norm is used in the evaluation of the discretization errors since it is sensible to local oscillations.
In Figure 5, the error convergence for the vertical velocity is reported for EPM, APM, APM2 and
DPM formulations in a double logarithmic scale. The APMR is not reported since the projection
filter step cannot alter the slope of APM in the physical plane but can only shift the curve, thus
the only next test is used to check it along with a spectral analysis. The convergence curve of the
pressure gradient is not reported since it is well known that in the pressure-free projection method
the obtained potential field is no longer than a first-order approximation of the pressure one.
However, more detailed results are reported in Reference [8]. In the EPM formulation, Neumann
boundary conditions are prescribed as indicated in (30) as well as we prescribed the analytical
conditions at the points j =m − 2 and j = 3 for �n+1

C i,m and �n+1
C i,1 (but we tested that Neumann

conditions did not change the convergence). The results clearly illustrate that EPM is far from the
expected second-order convergence owing to the fact that the L∞ norm signals errors near the
boundaries and oscillations appear everywhere. Some improvements could be obtained by using
a different stencil near the boundary but oscillations still are present. Conversely, both APM and
APM2 formulations produce similar behaviour with second-order convergence as well as DPM
that, however, appears slightly better in terms of magnitude. However, for a unitary Reynolds
number, this result cannot be considered exhaustive of all real features of the formulations since
the whole wavenumbers range is well resolved also on the coarsest grid (that is the cell-based
Reynolds number is always less than one). Furthermore, the Taylor solution depicts an energy-
decaying flow and the behaviour of a long-term integration is less relevant. Therefore, rather than
repeating this test at a greater Reynolds number, a different and more critical test is now illustrated.
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Figure 5. Taylor-vortex viscous problem at unitary Reynolds number: convergence curves of the vertical
velocity errors in the L∞ norm reported in a double logarithmic scales.

According to Rider [14, 26] a vortex-in-a-box inviscid flow is simulated for testing long-term
behaviour of the time integration. This test uses the analytical stream-function

�(x, y) = 1

�
sin2(�x) sin2(�y) (56)

from which, by taking the curl of the vector field k�(x, y), k being the unit vector in the direction z,
one deduces the initial velocity field. The computational domain is the square V = [0, 1] × [0, 1] and
periodic boundary conditions are prescribed along the x-direction while prescribing homogenous
Dirichlet only at y = 0, 1, slightly differently from what performed by Rider that used periodicity
in both directions. This time, the Reynolds number is infinite and, irrespectively of the used
number of grid points, the flow scales that are generated by the inviscid non-linear interaction
at high wavenumbers (i.e. wavenumbers greater than the Nyquist ones) are not resolvable. This
is a classical prototype of a situation in which, at high Reynolds number, the LES would have
been the correct formulation. Owing to the discussed characteristic of the Fourier symbol of the
operators, it is now expected that a greater evidence of the local grid decoupling will appear near
the Nyquist frequencies better highlighting the differences in the performances of the illustrated
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projection methods. In the present test-case, the results obtained with the APMR formulation are
also presented and discussed. Moreover, it is well known how inviscid flows are very critical to be
simulated by genuine non-dissipative central formula along with explicit time integration leading
to an almost incessant numerical instability for long-term integrations.

In a first case, the computational grid is composed by 642 uniform cells and the time step is fixed
to �t = 2× 10−3. The computations have been performed over several time units, until T = 16, and
the results obtained for a time T = 10 are now illustrated. The Figures 6–9 illustrate the solution
for the APM, APM2, APMR and DPM formulations, respectively, in terms of the iso-lines of
computed potential field along with the vector plot and the stream-traces. The results obtained
with the EPM formulation are not reported since the run has become numerically unstable after
few time units. Again, the inviscid flow represents a very critical test for the stability of central
discretization and EPM fails since the decoupling at high wavenumbers is amplified by the strong
non-linear interaction present in the Euler equations. On the other hand, this is not surprising if
one thinks of a simple linear advection equation that is well known to be unconditionally unstable
for first order in time explicit integration. From examination of the figures, it clearly appears that,
also on this coarse grid, DPM produces very good results both in the velocity and in the potential
field highlighting a very regular behaviour without appearance of oscillations. Moreover both APM
and APMR solutions, although reasonably acceptable especially when comparing them with the
results obtained in References [14, 26] on a doubled grid-resolution, still present clear oscillations.
Looking at the poor solution in Figures 7, the superiority of these methods over APM2 is very
clear, demonstrating the efficiency of coupling the MAC-based normal-face velocity. Anyway,
the divergence error in the APM and APMR is source of different behaviours after a long-term
integration that we want to analyse. Therefore, this aspect can be better seen by analysing Figures 10
wherein the time evolution of the divergence error in the L∞ norm: (a) and of the volume-averaged
kinetic energy vertical component; (b) is reported. It clearly appears that APM2 becomes unstable
while APM and APMR tend to depart from DPM at higher time-units with a slightly lesser
divergence error for the APMR. This is also better highlighted from the fact that the kinetic
energy obtained with APMR tends to follows the DPM behaviour while APM tends to depart
from them. Thus, as expected, an error in the mass conservation is responsible of local production
in the kinetic energy and this effect must be absolutely controlled for an accurate simulation of
turbulence.

For emphasizing the differences between APM, APMR and DPM formulations, that appear
the best candidates for long-term integrations, a second set of computations compares the results
obtained on a refined grid composed by 2562 uniform cells with time step fixed to �t = 5× 10−4.
Again, the computations have been performed over several time units and the results are discussed
for the time T = 10. For the sake of brevity, only the iso-lines of the potential field are shown in
Figures 11–13. Now it happens that APM becomes unstable, strong oscillations appearing every-
where, while APMR shows a regular behaviour both in the interior and along the boundary with
periodicity but oscillations near the other boundaries still appear. Conversely, DPM show a regular
field everywhere, confirming the capability of filtering spurious modes near non-homogeneous
boundaries. Owing to the numerical instability, going up to T = 15 was not possible for APM
while the iso-lines of the potential field for APMR and DPM are shown in Figure 14, superimposed
on the same frame, being the DPM showed with marked line. The result is the APMR starts to
show consistent oscillations near the Dirichlet boundaries whereas DPM continues to be very
regular everywhere. Again, this aspect can be better seen in Figures 15 wherein the time evolution
of the divergence error in the L∞ norm (a) and of the volume-averaged kinetic energy vertical
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Figure 6. Vortex-in-a-box problem 642 uniforms cells: (a) iso-lines of the potential field at T = 10 for the
APM formulation; and (b) vector plot and stream-traces at T = 10 for the APM formulation.
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Figure 7. Vortex-in-a-box problem on 642 uniforms cells: (a) iso-lines of the potential field at T = 10 for
the APM2 formulation; and (b) vector plot and stream-traces at T = 10 for the APM2 formulation.
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Figure 8. Vortex-in-a-box problem on 642 uniforms cells: (a) iso-lines of the potential field at T = 10 for
the APMR formulation; and (b) vector plot and stream-traces at T = 10 for the APMR formulation.
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Figure 9. Vortex-in-a-box problem on 642 uniforms cells: (a) iso-lines of the potential field at T = 10 for
the DPM formulation; and (b) vector plot and stream-traces at T = 10 for the DPN formulation.
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Figure 10. Vortex-in-a-box problem on 642 uniforms cells: time evolution of: (a) the divergence error in
the L∞ norm; and (b) the volume-averaged vertical kinetic energy.
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Figure 11. Vortex-in-a-box problem on 2562 uniforms cells: iso-lines of the potential
field at T = 10 for the APM formulation.

component, (b) is reported. It is clear that on this finest grid, the APM becomes unstable, the
APMR is stable with an oscillating but increasing behaviour of the divergence error while the
DPM is correctly reproducing a divergence error corresponding to the tolerance of the iterative
solvers. The kinetic energy behaviour shows that the accumulation of divergence errors in APM
corresponds to a production of the energy level at high wavenumber, leading to the instability.
On the other hand, APMR and DPM show a quite similar behaviour, apparently the difference in
the divergence error being non-influent on the energy. However, rather than inspecting the energy
content in the physical space, is more illustrative to analyse the spectral content at the resolved
wavenumbers.

In order to inspect the spectral behaviour of the solutions, the discussion of the results is
now completed by means of the Fourier analysis on the velocity field. A data reduction on the
two velocity components is performed by averaging the components along the y-direction and
performing the Fourier transform along the x-direction. Therefore, the resulting spectral content
is indicative of an average energy level for each kx wavenumber. In Figures 16 and 17, the energy
content of the (a) horizontal and (b) vertical velocity components at T = 10, 15 are reported in a
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Figure 12. Vortex-in-a-box problem on 2562 uniforms cells: iso-lines of the potential
field at T = 10 for the APMR formulation.

double logarithmic scale with the wavenumbers scale normalized by the zero wavenumber. The
figures clarify that the APM produces high wavenumber oscillations that are not dissipated, the
energy is badly correlated producing a strong pile-up and leading to instability. Such oscillations
are related to spurious non-divergent modes that are produced by the large stencil of the divergence
and are not enough controlled by the compact Laplacian stencil alone. The fact that the instability
is present on the finest grid and not on the coarser can result misleading actually, it is plausible
to deduce that instability can occur also on the coarser grid if the simulation goes ahead for
longer times. The more the cells are added, the more the mass errors sum each other and higher
wavenumber errors are rapidly amplified. As the spectra of APMR and DPM are concerned at
T = 10, they appear quite similar for the horizontal components although showing a slight pile-up
close to the Nyquist frequency. A zoom on the higher wavenumber range allows seeing some small
difference in the level, with a reduced content in the APMR. Much more distinctive is such level
difference in the vertical component for which it appears that the projection filter dissipates the
energy content in the neighbourhood of the Nyquist frequency. The energy content provided by
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Figure 13. Vortex-in-a-box problem on 2562 uniforms cells: iso-lines of the potential
field at T = 10 for the DPM formulation.

the DPM formulation seems to be better maintained near the Nyquist frequency even if, owing to
the absence of physical as well as modelled dissipation, the high wavenumbers are deviated from a
theoretically expected inertial sub-range, presenting an oscillating correlation. Figure 17 compares
the spectral content at T = 15, only for APMR and DPM formulations helping to highlight that
the energy level of APMR is more reduced than DPM in a wide portion of the spectrum, affecting
also large scales, but the pile-up is not reduced and is presumably that APMR could get instability
for longer times. However, this behaviour is not meaning that the projection filters methodologies
[14, 26] are inefficient since velocity filters are not here implemented and our projection method is
not exactly the same used by Rider. Again, such spectral analysis must be read in the framework
of LES formulation where the energy content of the resolved scales is the only information one
possesses for modelling the unresolved scales. Particularly, the most active scales are those close
to the LES cut-off that could be excessively dissipated by the APMR formulation. This aspect is
important and future studies should be devoted to investigate deeper the action of projection filters
on turbulence modelling.
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Figure 14. Vortex-in-a-box problem on 2562 uniforms cells: iso-lines of the potential field at T = 15 for
the APMR (continuous lines) and DPM (marked lines) formulations.

A final comment is devoted to the computational efficiency of the methods. The DPM and
APM formulations required to solve two and one elliptic solvers, respectively, while the APMR
required one elliptic solver plus a single Jacobi iteration. All iterative solvers stopped at the same
tolerance. The number of iterations of each solver is recorded during the previous computations
and is reported as function of time in Figure 18. It can be seen that the computational effort of the
DPM compared to APM (until it is stable) is augmented only by the second solver that however
requires no more than one-third of the iterations necessaries for the convergence of the first one.
This is acceptable due both to the increased stability characteristic and to the fact that it was
experienced that the tolerance of the second solvers can be augmented while maintaining the good
quality of the formulation. The computational effort of the APMR is similar to that of the first
solver in the DPM, showing some small amount of additional iterations. To this cost, it must be
added that of performing a single Jacobi iteration for the projection filter. Globally, it seems that
APMR is less expensive as regards the computational cost but it seems also that the efficiency in
terms of the rate with the obtained accuracy is favourable to the DPM formulation.
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Figure 15. Vortex-in-a-box problem on 2562 uniforms cells: time evolution of: (a) the divergence error in
the L∞ norm; and (b) the volume-averaged kinetic energy vertical component.
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Figure 16. Vortex-in-a-box problem on 2562 uniforms cells: energy spectral content of
the: (a) horizontal; and (b) vertical velocity components at T = 10 in a double logarithmic

scale with a zoom on the highest wavenumbers.
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Figure 17. Vortex-in-a-box problem on 2562 uniforms cells: energy spectral content of the: (a) horizontal;
and (b) vertical velocity components at T = 15 in a double logarithmic scale.
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Figure 18. Vortex-in-a-box problem on 2562 uniforms cells: number of iterations for the SOR solvers in
APM, APMR and DPM formulations for the same tolerance. The number of iterations in APMR is added

by a single Jacobi iteration for performing the projection filter step.

8. PERSPECTIVES AND CONCLUSIONS

This study is motivated by the necessity to investigate the suitability of a second-order accurate
non-staggered FV method in simulating long-time behaviour of turbulent flows. More specifically,
this study is part of a more general research concerning the LES of oceanographic flows where
buoyancy, wind stress, Coriolis acceleration are simultaneously present and produce turbulence in
non-equilibrium in the marine environment (e.g. mixed layer, Langmuir circulation). Therefore,
the goal is to implement a non-staggered formulation that does not produce false effects in the
energy dynamics due to compressibility errors as well as does not artificially dissipate the energy
content of the flow motion components. This is particularly important in LES that, requiring a
modelling procedure for computing the unresolved sub-grid scale terms for both the momentum
and thermal energy equation, needs a resolved field (that is a field with wavenumber components
within the LES cut-off) that is as much as possible less influenced by numerical errors.

A different formulation is also currently under investigation. It consists of a computational step
of the intermediate field v∗

C based on higher order accurate FV-based multidimensional upwind
schemes with a built-in deconvolution procedure for preserving good spectral accuracy. This is a
multidimensional extension of the issues reported in Reference [33] and the goal is to investigate
if the APM procedure works better and can be used without performing the second projection.
The hope is to get the same good stability as well as accuracy properties while diminishing the
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computational cost. In fact, at least a third-order accurate reconstruction of v∗
C is the objective,

therefore one must congruently redefine the discretization of the divergence, gradient as well
as Laplacian operators, similarly to what has been done in Reference [12]. At present, some
preliminary results have been obtained only for the Taylor solution but a deeper investigation on
long-time behaviour is still under investigation.

In this paper a second-order accurate FV-based projection method on non-staggered grids is
presented and a strategy to obtain an exact projection in two consecutive steps (DPM) is suggested.
Thus, a second elliptic equation, suitably derived from the projection of cell-centred intermediate
velocity, is solved. The additional computational effort of the second solver (although it is not
necessary to use the same high tolerance level of the first solver) is justified by the fact that one
should use a very refined grid as well as a small time step to reduce the errors of the APM based
on a single solver. Furthermore, the momentum interpolation method prevents spurious oscillations
but adds artificial dissipative terms that can alter the vorticity field whilst the present method is
based only on a potential correction.
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